
3-D Inversion of Helicopter EM Data

Börner, R.-U.1, Afanasjew, M.2, Eiermann, M.2, Ernst, O. G.2, Scheunert, M.1, Spitzer, K.1

1Institute of Geophysics and Geoinformatics, 2Institute of Numerical Analysis and Optimization

Introduction

Figure 1: Typical resistivity map derived from an
airborne survey. Due to large lateral gradients in the
resistivity distribution, areas indicated by ”2-D” and
”3-D” can not be interpreted with 1-D models.

Airborne electromagnetic methods quickly
provide resistivity maps of large areas. These
resistivities are obtained from layered half-space
models. However, the underlying 1-D assumption
is often violated. In such cases, a full 3-D
inversion has to be carried out. By defining
appropriate dimensionality indicators (Fig. 1) it
is possible to reduce the amount of data to be
inverted. In this poster, we demonstrate a 3-D
inversion approach for multi-frequency helicopter
electromagnetic data. For preliminary studies,
we invert a synthetic data set for a simple model
problem as published by Siemon et al. (2009).
The research is carried out in an interdisciplinary
project called ‘AIDA’ which was funded by the German Ministry of Education and Research BMBF
and the German Research Foundation DFG under the Geotechnologien Programme, grant 03G0735D.

The forward problem

Maxwell’s curl-curl equations in their quasi-static approximation for the secondary electric field can be
expressed within a bounded domain Ω ⊂ R

3 as

∇×∇× E s + iωµσE s = −iωµj p in Ω (1)

n × E s = 0 at ∂Ω, (2)

where j p(r) = (σ(r)− σ0(z))E p(r) acts as a source current density driven by the primary electric
field of a dipole source located above a stratified earth with electrical conductivity σ0(z).
After spatial discretization on a finite difference (FD) or finite element (FE) grid, the continuous
boundary value problem has been transformed into a system of linear equation as

A(σ)us = b, (3)

where A(σ) = K + iωM(σ) is a sparse, complex-valued, symmetric, and typically large matrix. The
right-hand side b contains the discretized source terms. The solution of the linear system yields the
discrete secondary electric field us. Generally, the location of the spatial locations where the field
components are sampled may differ from the location of the discrete field components within the
computational domain. Therefore, mapping or measurement operators Q have to be defined yielding
the total fields

E(r) = QE(r)[us] + E p(r) (4)

H(r) = QH(r)CE [us] + Hp(r). (5)

The operators QE and QH provide the sought quantities by forming a linear combination of the
relevant components of the discrete solution vector.

Figure 2: Discretization of an electrical conductivity distribution on a finite difference grid (left) and finite element grid
(right). Flight profiles for gathering of the synthetic data are laid out perpendicular to the strike of the conductive body
(faded red, completely shown) at a height of h = 30 m above ground.

387 Hz

100 200 300

22

22.5

23

23.5

[p
p

m
]

R

100 200 300

70

75

80

85

90

Q

100 200 300
−10

−5
−3

0

3
5

10

Profile [m]

R
e

l.
 e

rr
o

r 
[%

]

100 200 300
−10

−5
−3

0

3
5

10

Profile [m]

8225 Hz

100 200 300

300

350

400

[p
p

m
]

R

100 200 300

300

400

500

600

Q

100 200 300
−10

−5
−3

0

3
5

10

Profile [m]

R
e

l.
 e

rr
o

r 
[%

]

100 200 300
−10

−5
−3

0

3
5

10

Profile [m]

133200 Hz

100 200 300

1500

2000

2500

[p
p

m
]

R

100 200 300

1050

1100

1150

1200

Q

100 200 300
−10

−5
−3

0

3
5

10

Profile [m]

R
e

l.
 e

rr
o

r 
[%

]

100 200 300
−10

−5
−3

0

3
5

10

Profile [m]

Figure 3: Comparison of solution obtained by an FD discretization (red) and an FE discretization (green) with a reference
solution obtained by an integral equation (IE) code by Avdeev et al. (1998). The top panel indicates real (R) and
imaginary (Q) parts of the normalized magnetic field at the receiver for three distinct frequencies. Data has been
simulated along a profile perpendicular to the conductive body (Fig. 2). The lower panel indicates the relative error with
respect to the IE solution.

Generation of synthetic data

Figure 4: Flight profiles for computation of synthetic data.

For the numerical experiments we have
computed synthetic data for the three
profiles Line 2.1, 3.1, and 4.1 shown in
Fig. 4. The lateral distance of the flight
profiles is 200 m. Along the profiles a
spacing of 4 m has been chosen. The
length of the flight paths is 1000 m.
Data has been collected for five distinct
frequencies. In total, we have generated
3765 complex-valued data points.

The inverse problem

We aim at finding a model parameter distribution, i. e., m = logσ, m ∈ R
M, such that both the

difference between measured data d obs and predicted data from the forward solution for a given model
parameter set as well as the parameter roughness are minimal:

1

2

∥

∥

∥
d obs

− QA−1(m)b
∥

∥

∥

2

2
+
λ

2

∥

∥

∥
W [m − mref]

∥

∥

∥

2

2
→ min! (6)

A linearization of the forward operator with respect to the model parameters is required for the
solution of the inverse problem. The sensitivity equation approach yields expressions for the partial
derivative of the predicted data with respect to the model parameters

J :=
∂d

∂m
= QA−1L (7)

with

L =
∂b

∂m
−

∂A

∂m
×2 u. (8)

The Gauss-Newton method yields a model update. Based on the resulting system of normal equations

[JHJ + λW TW ]∆m = JH[d obs
− QA−1(m)b]− λW TW [m0 − mref] (9)

with

m = m0 +∆m (10)

the least squares problem can be solved for the model update ∆m by Krylov subspace methods, such
as CG or LSQR. Note that Krylov methods avoid the explicit forming of the Jacobian J. Instead,
only the action of the Jacobian on a vector is necessary, which requires the solution of a forward
problem at each Krylov iteration. A factorization of the system matrix A can substantially reduce the
numerical effort required for the solution of systems with multiple right-hand sides.
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Figure 5: Objective functions of the least squares problem
with respect to the step length α.

The curves in Fig. 5 result from the underlying
linearized (black) and the nonlinear (blue)
minimization problem as well as from an
approximation to the corresponding objective
function of the latter (red). Concerning a fixed
model update, we aim at finding the minimum
of the blue curve (blue star), but we actually
calculate the function value that results from
the minimum of the Gauss-Newton method
(right triangle and black star, respectively).
To overcome this discrepancy, we apply a line
search algorithm which gives an approximate
step length derived from the minimum of a
quadratic function (red star).

Inversion results

M DOF IterGN ∅Timefwd ∅TimeGN Timetot

144 2952 14 5.4 s 51.3 s 771 s
1152 43127 12 180.7 s 1280.2 s ≈ 4 h
1152 102258 14 615.6 s 3799.4 s ≈ 19 h

Timings for different complexities of the
parameter mesh and adaptively refined
meshes for the forward problem. The
maximum number of the inner CG iterations
is limited to 50 in each case.

Figure 6: Inversion result for the 1152 model parameters.

Fig. 6 shows the inverted parameter
cells which are located in a restricted
inversion area. This inner area is adapted
from the sensitivity distribution of the
homogeneous case and includes a subset
of nearly all domains of the original
modeling area. We therefore used a
homogeneous starting model and an
exponentially decreasing regularization
parameter.

Outlook

Further studies will incorporate more involved weighting strategies for unstructured grids as well as
the exploration of automatic updating schemes for the regularization parameter. Additionally, we aim
at the investigation of case studies for real helicopter measurement data sets.
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